

The University Of Sheffield.

Damping of metallic wool with embedded rigid body motion amplifiers

Ning Tang, Charles E Lord, Jem A Rongong Dynamics Research Group, The University of Sheffield

What is metallic wool

Metal filaments Porous material Homogenous Temperature insensitive

Why to use steel wool as a vibration damper viscoelastic material ✓ Damping varies with temperature > porous metallic material ✓ Tangled metal wire material - Difficult to fabricate \checkmark Metal swarf

- Heavy weight and high additional volume
- Inconsistent stiffness and damping

Use steel wool as a vibrational damper > Investigation of damping from steel wool Effect of mode shape/strain wave \checkmark Effect of amplitude dependent nonlinearity \checkmark Investigation of effectiveness of RBMAs ✓ Different quantities and distributions ✓ Different compaction / pre-stress levels Semi-analytical model Modal Strain Energy method \checkmark Multiple Tuned Mass damper model

How to use steel wool as a vibration damper

How to use steel wool as a vibration damper

Test Structure – background

Test Structure – background

Natural frequencies does not vary with excitation amplitudes
 Damping fluctuation due to imperfect constraint.

Damping from steel wool Effect of pre-stress/compaction levels (1g)

♦ Natural frequencies does not vary with different compaction
 ♦ Damping for 1st mode ↓; for 2nd mode, 6-layer configuration ?

Damping from steel wool Effect of excitation amplitudes (4 layer)

♦ Insignificant effect on natural frequencies for both modes
♦ Damping for 1st mode ↓; for 2nd mode ↑ <u>SLIDING</u>

Damping from steel wool with RBMAs Effect of excitation level

\diamond Natural frequencies

- ✓ \uparrow for 1st mode, ↓ for 2nd mode
- \diamond Damping
 - ✓ 1^{st} mode : ↑ up to 3g and then ↓ until 7g
 - ✓ 2^{nd} mode : ↓ up to 3g and then ↑ until 7g
- \diamond Sloshing mode for rigid spheres

Damping from Steel wool with RBMAs Effect of RBMA quantities/distribution (1g excitation)

Mode 1

Damping from Steel wool with RBMAs Effect of RBMA quantities/distribution (1g excitation)

Mode 2

Damping from steel wool with RBMAs Overall performance of RBMAs

- Natural frequency
 steel wool ->
 - additional mass
 - ✓ locations of RBMAs
- Damping
 - ✓ steel wool → constant damping
 ✓ internal resonance of RBMAs

Mode 1

Damping from steel wool with RBMAs Overall performance of RBMAs

Natural frequency

✓ steel wool →
 structure stiffener
 ✓ locations of RBMAs

Damping

 ✓ steel wool → constant damping
 ✓ internal resonance of RBMAs

Mode 2

Semi-analytical model

Strategy

 ◇ Identify strain wave → Total strain energy for steel wool.
 ◇ Using multiple TMD model to identify energy dissipation from Steel wool and RBMAs. (modal strain energy method)
 ◇ Insert updated strain energy of steel wool back to harmonic analysis

Semi-analytical model Analytical model — elastic properties

Semi-analytical model

Strategy

◇ Identify strain wave → Total strain energy for steel wool
 ◇ Using multiple TMD model to identify energy dissipation from Steel wool and RBMAs. (modal strain energy method)
 ◇ Insert updated strain energy of steel wool back to harmonic analysis

Semi-analytical model Analytical model

Semi-analytical model

Analytical model

Assumptions

- ✓ RBMAs : Spherical and rigid ; Move normal to steel wool
- ✓ Steel wool : isotropic and homogenous
- ✓ No interaction between neighboring RBMAs

Semi-analytical model Analytical model

Procedures

- Initial displacement was estimated using harmonic analysis
- ✓ Force acting on steel wool by RBMAs was then calculated and compared with inertia force.
- ✓ Iterations were carried out to achieve convergence between inertia force and displacement and then calculate strain energy

Semi-analytical model

Strategy

 ◇ Identify strain wave → Total strain energy for whole system
 ◇ Using multiple TMD model to identify energy dissipation from Steel wool and RBMAs. (modal strain energy method)
 ◇ Insert updated strain energy of steel wool back to harmonic analysis

Conclusion

Steel wool was shown to be a good metallic damping medium

RBMA showed a significant improvement on the energy dissipation of steel wool

Semi-analytical numerical model was established to predict the performance of steel wool with RMBAs.

Thanks for your attention. Any questions?