

Experimental investigation and modeling of dynamic performance of wave springs

<u>NING TANG</u>, Jem Rongong, Charles Lord, Neil Sims

Dynamics Research Group The University of Sheffield

What is wave spring?

Crest-to-crest wave spring

Nested wave spring

- Flat wire compressive springs
- Construct from fixed-width metal strip
- Local shape sinusoidal wave
- Many contact regions

Why use wave spring?

- Coil spring
 - ✓ Reduce overall height
 - ✓ Nonlinear stiffness
 - ✓ Increase damping capability
- Viscoelastic material
 - \checkmark Insensitive to temperature
- Application
 - ✓ Stiffness and damping element of Tuned Mass Damper.

How to use wave springs

- Experimental investigations of stiffness and damping of wave springs
 - ✓ Effect of temperature
 - ✓ Effect of static compression
 - ✓ Repeatability
- Finite element modeling to predict performance of wave springs
 - \checkmark Investigation of source of stiffness and damping
- Tuned mass damper using wave spring

- Typical hysteresis loop for wave springs ✓ Frictional damping behaviour is observed
 - ✓ Obvious damping can be obtained from wave spring

The

Of Sheffield.

Repeatability of dynamic excitation

Nested wave spring

- 96 cycles used to estimate dynamic performance
- Stiffness varies with different cycles
- may be caused by sliding and rotation from wave spring

Repeatability of dynamic excitation

Nested wave spring

- 96 cycles used to estimate dynamic performance
- Energy loss factor is almost same
- average contact area and force vary slightly

Strain, %

• Crest-to-crest wave springs ✓ Stiffness can vary from 10 to 90 N/mm

- Crest-to-crest wave springs
 - ✓ Negligible damping was observed from 15%-25% strain
 - ✓ Relative high damping occur in extreme low/high strain

- Nested wave springs
 - \checkmark limited stiffness variation is achieved
 - ✓ Stiffness could increase approx. 3 times with pre-strain

- Nested wave springs
 - ✓ Energy dissipation is high
 - ✓ Less variation occurs when static compression is larger than 10%

Effect of temperature

A WORLD

RSITY

- Identify stiffness of wave springs design tool
- Uncertainty of modelling of wave springs
 - ✓ Local amplitudes for sinusoidal wave NOT correct
 - ✓ Shape of waves NOT sinusoidal curve

- Single layer metal strip
 - ✓ Use to identify whether FE code can estimate stiffness of curved structure
 - ✓ Investigate uncertainties of waveform

Single layer metal strip

Nested wave spring

Application: Stand alone TMD

- Key features
 - Ease to adjust static compression
 - Ease to modify limitation of tuning frequencies
- Challenges
 - Additional unnecessary weight
 - Initial static compression

Performance for stand alone TMD

Conclusion

- Wave springs are shown as a kind of temperature insensitive elastic and damping elements
- Finite element modelling can predict the stiffness of wave spring while local waveform need to be modelled accurately.
- TMDs using wave springs are shown to be effective, especially in high temperature.

Thanks for your attention. Any questions?

Mesh convergence

