

Department Of Mechanical Engineering. Mahmud Iskandar Seth A Rahim Kirill Horoshenkov Jem Rongong

Department of Mechanical Engineering, The University of Sheffield, Velocity House, 3, Solly Street, Sheffield, S1 4DE, United Kingdom

THE VIBRO-ACOUSTIC PROPERTIES OF EPOXIDISED NATURAL RUBBER (ENR)

Corresponding email: mibsetharahim1@sheffield.ac.uk

INTRODUCTION

■ Three types of rubber with different epoxidation levels: 0, 25 and 50 mol % were investigated.

- The dynamic properties of these materials were measured at different temperatures and frequencies.
- The measured dynamic properties were superposed to form master curves using time temperature superposition equivalence, thereby the dynamic properties for each rubber can be seen in a broader frequency and temperature range.
- These data are essential for modelling the vibro-acoustic behaviour of ENR in a range of noise control applications.
- These types of rubber are now being developed into porous media using a novel production process.

METHOD

Rubber formulations:

Ingredient	R 0	R25	R5 0						
Rubber	100								
Sulfur	2.5								
Antioxidant	1								
Zinc Oxide	4								
Stearic Acid	4								
CBS	1								
PVI	0.3								

RESULTS

- **Effect of Temperature:**
- Storage modulus, G' and Tan δ are parameters used to identify the stiffness & the damping of rubber.

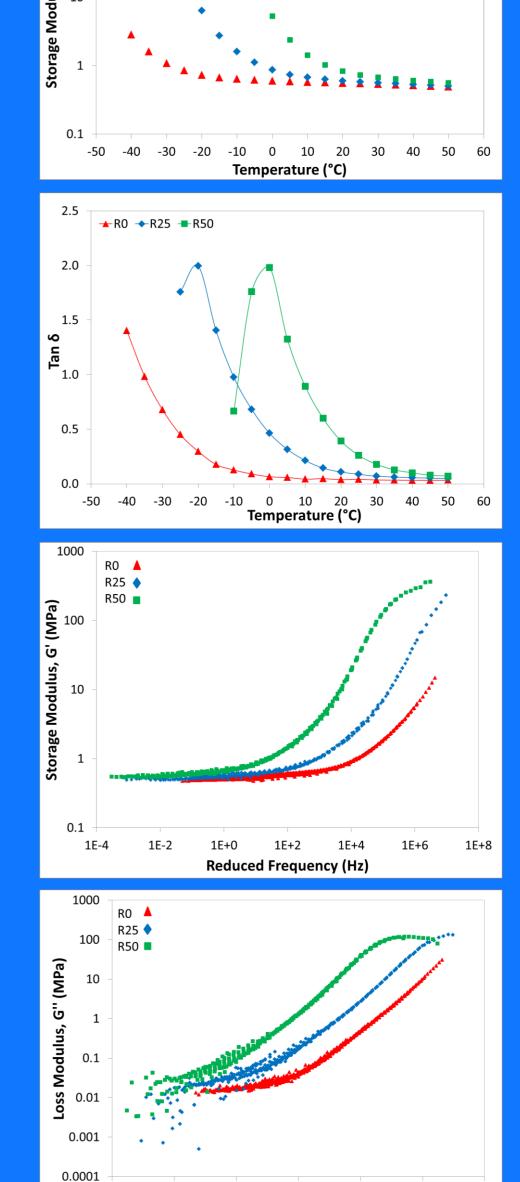
000										
000		- 050								
	▲ RU ◆ R25	K50								
100										
100 -										
		•								
		•								
10										
	100 -	▲ R0 ◆ R25	▲ R0 ◆ R25 ■ R50	▲ R0 ◆ R25 ■ R50 100 -	▲ R0 ◆ R25 ■ R50 100 - ◆ ■	▲ R0 ◆ R25 ■ R50 100 -				

Dynamic properties were tested using Metravib DMA +1000 machine.

• The variation dynamic properties at 10 Hz excitation for natural rubber are identified.

Effect of Frequency:

- Dynamic properties are predicted at a broader frequency range by obtaining a master curve using time-temperature superposition principle.
- The master curve represents the dynamic properties at reference temperature of 20°C in a broader frequency range from 0.01 Hz to 10,000,000 Hz.


ENR Foams Manufacturing:

ENR foams Microscopy image

Density $< 300 \text{kg/m}^3$

Test conditions:

• Shear Mode

- Frequency: 1-170 Hz
- Temperature: -40°C to 50°C
- Strain: 1%
- Application of time-temperature superposition principle:
- Horizontal Shifting, a_T
- Vertical Shifting, b_T

CONCLUSION

The damping of rubber plays a key role in noise control applications. Such damping is needed to reduce structure-borne vibrations and their ability to generate air-borne noise.

The results obtained are useful to understand the dynamic properties of natural rubber at a range of temperatures and frequencies. These are essential to predict if natural rubber can perform well in noise control application where the environmental conditions and excitation are changing.

 $C_1 \& C_2$: viscoelastic coefficients; T: selected temperature; T_0 : reference temperature; ρ_0 : rubber density at reference temperature; ρ : rubber density at selected temperature